938. The Catalytic Action of Anionic Catalyses. Part X.¹ The Reaction of Ethyl-lithium with Fluorene and 1,1-Diphenylethylene

By ALWYN G. EVANS, C. R. GORE, and N. H. REES

WE previously studied the reaction of n-butyl-lithium with 1,1-diphenylethylene² and with fluorene³ in benzene, and we have now extended these investigations to ethyllithium.

Experimental.—The apparatus, preparation of materials, and techniques are the same as used previously.^{2,3} Ethyl-lithium was prepared by a method similar to that of Ziegler and Colonius,⁴ except that the reactions were carried out in the high-vacuum system. A benzene solution or a pentane solution of ethyl bromide was allowed to react with metallic lithium, filtered, and evaporated to dryness, and benzene was distilled on to the solid ethyl-lithium, the resulting solution being again filtered. Butyl-lithium was prepared as described previously.²

Results.—Orders of reaction. Experiments in which the ethyl-lithium is in excess show that the reactions are first-order in fluorene and in ethylene (see Figure). The order in ethyl-lithium is low; in its reaction with fluorene it is one-ninth (see Table 1), whilst one-sixth had been obtained for butyl-lithium.² This lower order is supported by experiments on the reaction of ethyl-lithium with the olefin, where we find an order of less than one-ninth. (We do not give a specific value in this latter case since the experimental accuracy required to distinguish significantly between orders of one-ninth and less would have to be far greater than is possible at present.)

Temperature-dependence. The temperature-dependence of these reactions and of the reaction of butyl-lithium with fluorene was measured (Table 2). The values of ΔH^{\ddagger} are

- Part IX, A. G. Evans and J. C. Evans, *Trans. Faraday Soc.*, 1965, **61**, 1202.
 A. G. Evans and D. B. George, J., 1961, 4653.
 A. G. Evans and N. H. Rees, J., 1963, 6039.
 K. Ziegler and H. Colonius, *Annalen*, 1930, **479**, 135.

Notes

Variation of optical density (D) with time, showing the reactions to be first-order in fluorene and in diphenylethylene

 $\begin{array}{ll} [{\rm EtLi}]_{i} = 6{\cdot}87 \times 10^{-3} {\rm M}. & [{\rm Fluorene}]_{i} = 2{\cdot}02 \times 10^{-3} {\rm M}. & {\rm Temp.} = 31^{\circ} {\rm c}. \\ & D \mbox{ at } 345 \mbox{ m} \mu) = 2{\cdot}08 \mbox{ (2-mm. cell)}. \\ [{\rm EtLi}]_{i} = 6{\cdot}48 \times 10^{-4} {\rm M}. & [{\rm CH}_{2}{\cdot}{\rm CPh}_{2}]_{i} = 1{\cdot}09 \times 10^{-4} {\rm M}. & {\rm Temp.} = 30^{\circ} {\rm c}. \\ & D \mbox{ at } 427 \mbox{ m} \mu = 2{\cdot}05 \mbox{ (10-mm. cell)}. \end{array}$ Curve A. Curve B.

IABLE I							
The reaction of fluorene with ethyl-lithium ($R_{ m i}={ m initial}$ rate) at 31°							
10 ³ [Fluorene] (м)	10 ³ [EtLi] _і (м)	R_{i} (mole 1. ⁻¹ sec. ⁻¹)	$R_{i}/([Fl]_{i}[EtLi]_{i}^{1/9})$				
4.07	60.2	$6\cdot 33 imes 10^{-8}$	$2 \cdot 1 imes 10^{-5}$				
4.08	8.85	$5\cdot37 imes10^{-8}$	$2\cdot 2 imes10^{-5}$				
4.07	171.0	$7{\cdot}07 imes10^{-8}$	$2\cdot 1$ $ imes$ 10 ⁻⁵				
4.07	6.87	$5\cdot26$ $ imes$ 10^{-8}	$2\cdot 3 imes 10^{-5}$				
4.07	3.22	$4\cdot47~ imes~10^{-8}$	$2 \cdot 1 imes 10^{-5}$				

TABLE 2

Temperature-dependence

System	Temp. (°c)	10 ⁶ k	
EtLi + Fluorene	19.0	8.76	1.1/9 mole-1/9 sec1
	31.6	$22 \cdot 5$,,
	41.4	$42 \cdot 1$,,
	55.0	147	,,
	67.0	327	,,
EtLi + Olefin	20.0	8.8	l. ^{1/9} mole ^{-1/9} sec. ⁻¹
	30.3	24	,,
	$51 \cdot 1$	170	,,
BuLi + Fluorene	20.8	$7 \cdot 6$	l. ^{1/6} mole ^{-1/6} sec. ⁻¹
	30.7	16	,,
	40.2	37	,,
	53.3	123	,,
	64.5	234	,,

Table	3
-------	---

Changes in enthalpy, entropy, and free energy

System	ΔH^{\ddagger} (kcal. mole ⁻¹)	ΔS^{\ddagger} (30°) (cal. mole ⁻¹ deg. ⁻¹)	ΔG^{\ddagger} (30°) (kcal. mole ⁻¹)
$EtLi + CH_2:CPh_2$	17.3	-22.8	$24 \cdot 2$
EtLi + Fluorene	14.9	31.0	$24 \cdot 3$
$BuLi + CH_2:CPh_2$ (ref. 2)	15.8	26.4	$23 \cdot 8$
BuLi + Fluorene	15.1	31.0	24.5

given in Table 3, together with the ΔG^{\ddagger} and ΔS^{\ddagger} values. (The order in ethyl-lithium in its reaction with the ethylene was taken as one-ninth.)

Notes

or

Discussion.—The results for the ethyl-lithium reactions run parallel to those for butyllithium, and may be interpreted, as before, by the equations: 2,3

in which the associated state of the alkyl-lithium is predominantly the x-mer.

The order for ethyl-lithium appears to be less than for butyl-lithium, and we have found this also in recent work using mixed ether-benzene solvents. The degree of association of ethyl-lithium in benzene had been determined earlier, by physical measurements, as 2⁵ and as 6.6-8

The activation enthalpies for all these reactions are fairly similar (see Table 3). We should not expect the change from butyl-lithium to ethyl-lithium to make much difference because both involve primary alkyl groups, but it is interesting that the reactions with 1,1-diphenylethylene and with fluorene should give such similar results, since the reactions are of quite different types; the former is the addition of butyl to a double bond, and the latter is a proton abstraction by a butyl group.

We thank the D.S.I.R. for a studentship (to C. R. G.), and Imperial Chemical Industries Limited for financial help.

CHEMISTRY DEPARTMENT, UNIVERSITY COLLEGE, CATHAYS PARK, CARDIFF.

[Received, October 28th, 1964.]

⁵ K. B. Piotrovskii and M. P. Ronina, Doklady Akad. Nauk S.S.S.R., 1951, 115, 737.

⁶ T. L. Brown and M. T. Rogers, J. Amer. Chem. Soc., 1957, 79, 1859.
 ⁷ G. Wittig, F. J. Meyer, and G. Lange, Annalen, 1951, 571, 167.

⁸ D. W. Dickerhoof, *Diss. Abs.*, 22, 3422.